0

SynapseX® — Intelligent Workload Routing

AI-powered orchestration across quantum, HPC, and GPU clusters. Automatic resource optimization for hybrid quantum-classical workloads.

SynapseX® is SoftQuantus®'s AI-powered orchestration platform for hybrid quantum-classical computing. It intelligently routes workloads across quantum, HPC, and GPU clusters with automatic resource optimization.

Overview

SynapseX® eliminates the complexity of managing hybrid computing environments. Its AI-driven scheduler automatically selects the optimal execution backend—quantum, GPU, or classical CPU—based on workload characteristics, resource availability, and cost constraints.

Key Features

Intelligent Workload Routing

  • AI-Powered Scheduling: Machine learning models predict optimal execution backend
  • Cost Optimization: Automatic selection based on price-performance tradeoffs
  • Latency Awareness: Real-time routing for time-sensitive workloads
  • Capacity Planning: Predictive resource allocation

Multi-Backend Support

  • Quantum: IBM Quantum, IonQ, Rigetti, AWS Braket, Azure Quantum
  • GPU: NVIDIA A100/H100 clusters, cloud GPU instances
  • HPC: LUMI, major supercomputing centers, on-prem clusters
  • Classical: Kubernetes, serverless, container platforms

Automatic Optimization

  • Circuit Optimization: Automatic gate reduction and qubit mapping
  • Batching: Intelligent job batching for throughput optimization
  • Caching: Result caching for repeated computations
  • Retry Logic: Automatic retry with exponential backoff

Architecture

┌─────────────────────────────────────────────────────────┐
│                     SynapseX® Platform                  │
├─────────────────────────────────────────────────────────┤
│  ┌─────────────────────────────────────────────────┐   │
│  │              AI Routing Engine                   │   │
│  │   ┌─────────┐  ┌─────────┐  ┌─────────┐        │   │
│  │   │ Workload│  │  Cost   │  │Latency  │        │   │
│  │   │ Analyzer│  │ Model   │  │ Pred.   │        │   │
│  │   └─────────┘  └─────────┘  └─────────┘        │   │
│  └─────────────────────────────────────────────────┘   │
├─────────────────────────────────────────────────────────┤
│  ┌──────────┐  ┌──────────┐  ┌──────────┐  ┌────────┐ │
│  │ Quantum  │  │   GPU    │  │   HPC    │  │Classical│ │
│  │ Backend  │  │ Backend  │  │ Backend  │  │ Backend │ │
│  └──────────┘  └──────────┘  └──────────┘  └────────┘ │
└─────────────────────────────────────────────────────────┘

Use Cases

Quantum Machine Learning

Automatically route variational quantum circuits to optimal backends based on circuit depth and qubit requirements.

Drug Discovery Pipelines

Orchestrate molecular simulations across quantum simulators and HPC clusters for pharmaceutical research.

Financial Modeling

Hybrid quantum-classical optimization for portfolio management and risk analysis.

Materials Science

Coordinate DFT calculations on HPC with quantum chemistry on quantum hardware.

Integration

Python SDK

from synapsex import SynapseXClient
 
client = SynapseXClient(api_key="your-key")
 
# Define a hybrid job
job = client.create_job(
    circuit=my_circuit,
    classical_postprocess=my_function,
    constraints={
        "max_cost": 10.0,
        "max_latency_ms": 5000,
        "prefer_quantum": True
    }
)
 
# Submit and let SynapseX route optimally
result = client.submit(job)
print(f"Executed on: {result.backend}")
print(f"Cost: ${result.cost}")

CLI

# Submit a hybrid job
synapsex submit --circuit circuit.qasm \
    --postprocess analyze.py \
    --budget 50.00
 
# Check job status
synapsex status job-12345
 
# View routing decisions
synapsex explain job-12345

Observability

  • OpenTelemetry: Distributed tracing across all backends
  • Metrics: Prometheus-compatible metrics export
  • Logging: Structured logging with correlation IDs
  • Dashboards: Grafana templates included

Getting Started

  1. Install SDK: pip install synapsex-sdk
  2. Configure Backends: Connect your quantum and classical resources
  3. Submit Jobs: Let SynapseX optimize routing automatically

Resources