SynapseX® is SoftQuantus®'s AI-powered orchestration platform for hybrid quantum-classical computing. It intelligently routes workloads across quantum, HPC, and GPU clusters with automatic resource optimization.
Overview
SynapseX® eliminates the complexity of managing hybrid computing environments. Its AI-driven scheduler automatically selects the optimal execution backend—quantum, GPU, or classical CPU—based on workload characteristics, resource availability, and cost constraints.
Key Features
Intelligent Workload Routing
- AI-Powered Scheduling: Machine learning models predict optimal execution backend
- Cost Optimization: Automatic selection based on price-performance tradeoffs
- Latency Awareness: Real-time routing for time-sensitive workloads
- Capacity Planning: Predictive resource allocation
Multi-Backend Support
- Quantum: IBM Quantum, IonQ, Rigetti, AWS Braket, Azure Quantum
- GPU: NVIDIA A100/H100 clusters, cloud GPU instances
- HPC: LUMI, major supercomputing centers, on-prem clusters
- Classical: Kubernetes, serverless, container platforms
Automatic Optimization
- Circuit Optimization: Automatic gate reduction and qubit mapping
- Batching: Intelligent job batching for throughput optimization
- Caching: Result caching for repeated computations
- Retry Logic: Automatic retry with exponential backoff
Architecture
┌─────────────────────────────────────────────────────────┐
│ SynapseX® Platform │
├─────────────────────────────────────────────────────────┤
│ ┌─────────────────────────────────────────────────┐ │
│ │ AI Routing Engine │ │
│ │ ┌─────────┐ ┌─────────┐ ┌─────────┐ │ │
│ │ │ Workload│ │ Cost │ │Latency │ │ │
│ │ │ Analyzer│ │ Model │ │ Pred. │ │ │
│ │ └─────────┘ └─────────┘ └─────────┘ │ │
│ └─────────────────────────────────────────────────┘ │
├─────────────────────────────────────────────────────────┤
│ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌────────┐ │
│ │ Quantum │ │ GPU │ │ HPC │ │Classical│ │
│ │ Backend │ │ Backend │ │ Backend │ │ Backend │ │
│ └──────────┘ └──────────┘ └──────────┘ └────────┘ │
└─────────────────────────────────────────────────────────┘Use Cases
Quantum Machine Learning
Automatically route variational quantum circuits to optimal backends based on circuit depth and qubit requirements.
Drug Discovery Pipelines
Orchestrate molecular simulations across quantum simulators and HPC clusters for pharmaceutical research.
Financial Modeling
Hybrid quantum-classical optimization for portfolio management and risk analysis.
Materials Science
Coordinate DFT calculations on HPC with quantum chemistry on quantum hardware.
Integration
Python SDK
from synapsex import SynapseXClient
client = SynapseXClient(api_key="your-key")
# Define a hybrid job
job = client.create_job(
circuit=my_circuit,
classical_postprocess=my_function,
constraints={
"max_cost": 10.0,
"max_latency_ms": 5000,
"prefer_quantum": True
}
)
# Submit and let SynapseX route optimally
result = client.submit(job)
print(f"Executed on: {result.backend}")
print(f"Cost: ${result.cost}")CLI
# Submit a hybrid job
synapsex submit --circuit circuit.qasm \
--postprocess analyze.py \
--budget 50.00
# Check job status
synapsex status job-12345
# View routing decisions
synapsex explain job-12345Observability
- OpenTelemetry: Distributed tracing across all backends
- Metrics: Prometheus-compatible metrics export
- Logging: Structured logging with correlation IDs
- Dashboards: Grafana templates included
Getting Started
- Install SDK:
pip install synapsex-sdk - Configure Backends: Connect your quantum and classical resources
- Submit Jobs: Let SynapseX optimize routing automatically
Resources
- Product Page: softquantus.com/products/synapsex
- Documentation: docs.softquantus.com
- Tutorials: docs.softquantus.com/tutorials